Theorem addb11 | index | src |

theorem addb11 (a b: nat): $ b1 a + b1 b = b0 (suc (a + b)) $;
StepHypRefExpression
1 eqtr
b1 a + b1 b = suc (b1 a + b0 b) -> suc (b1 a + b0 b) = b0 (suc (a + b)) -> b1 a + b1 b = b0 (suc (a + b))
2 addS
b1 a + suc (b0 b) = suc (b1 a + b0 b)
3 2 conv b1
b1 a + b1 b = suc (b1 a + b0 b)
4 1, 3 ax_mp
suc (b1 a + b0 b) = b0 (suc (a + b)) -> b1 a + b1 b = b0 (suc (a + b))
5 eqtr
suc (b1 a + b0 b) = suc (b1 (a + b)) -> suc (b1 (a + b)) = b0 (suc (a + b)) -> suc (b1 a + b0 b) = b0 (suc (a + b))
6 suceq
b1 a + b0 b = b1 (a + b) -> suc (b1 a + b0 b) = suc (b1 (a + b))
7 addb10
b1 a + b0 b = b1 (a + b)
8 6, 7 ax_mp
suc (b1 a + b0 b) = suc (b1 (a + b))
9 5, 8 ax_mp
suc (b1 (a + b)) = b0 (suc (a + b)) -> suc (b1 a + b0 b) = b0 (suc (a + b))
10 sucb1
suc (b1 (a + b)) = b0 (suc (a + b))
11 9, 10 ax_mp
suc (b1 a + b0 b) = b0 (suc (a + b))
12 4, 11 ax_mp
b1 a + b1 b = b0 (suc (a + b))

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, addeq, add0, addS)