theorem Taileqd (_G: wff) (_S1 _S2: set): $ _G -> _S1 == _S2 $ > $ _G -> Tail _S1 == Tail _S2 $;
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqidd | _G -> suc n = suc n  | 
        |
| 2 | hyp _Sh | _G -> _S1 == _S2  | 
        |
| 3 | 1, 2 | eleqd | _G -> (suc n e. _S1 <-> suc n e. _S2)  | 
        
| 4 | 3 | abeqd | _G -> {n | suc n e. _S1} == {n | suc n e. _S2} | 
        
| 5 | 4 | conv Tail | _G -> Tail _S1 == Tail _S2  |