Theorem Sumeq2d | index | src |

theorem Sumeq2d (_G: wff) (A _B1 _B2: set):
  $ _G -> _B1 == _B2 $ >
  $ _G -> Sum A _B1 == Sum A _B2 $;
StepHypRefExpression
1 eqsidd
_G -> A == A
2 hyp _h
_G -> _B1 == _B2
3 1, 2 Sumeqd
_G -> Sum A _B1 == Sum A _B2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)