theorem Listeqd (_G: wff) (_A1 _A2: set):
$ _G -> _A1 == _A2 $ >
$ _G -> List _A1 == List _A2 $;
Step | Hyp | Ref | Expression |
1 |
|
hyp _Ah |
_G -> _A1 == _A2 |
2 |
|
eqidd |
_G -> n = n |
3 |
1, 2 |
alleqd |
_G -> (all _A1 n <-> all _A2 n) |
4 |
3 |
abeqd |
_G -> {n | all _A1 n} == {n | all _A2 n} |
5 |
4 |
conv List |
_G -> List _A1 == List _A2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)