Theorem Ifeq1d | index | src |

theorem Ifeq1d (_G _p1 _p2: wff) (A B: set):
  $ _G -> (_p1 <-> _p2) $ >
  $ _G -> If _p1 A B == If _p2 A B $;
StepHypRefExpression
1 hyp _h
_G -> (_p1 <-> _p2)
2 eqsidd
_G -> A == A
3 eqsidd
_G -> B == B
4 1, 2, 3 Ifeqd
_G -> If _p1 A B == If _p2 A B

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)