theorem Ifeq (_p1 _p2: wff) (_A1 _A2 _B1 _B2: set):
  $ (_p1 <-> _p2) ->
    _A1 == _A2 ->
    _B1 == _B2 ->
    If _p1 _A1 _B1 == If _p2 _A2 _B2 $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | anl | (_p1 <-> _p2) /\ _A1 == _A2 -> (_p1 <-> _p2) | 
        
          | 2 | 1 | anwl | (_p1 <-> _p2) /\ _A1 == _A2 /\ _B1 == _B2 -> (_p1 <-> _p2) | 
        
          | 3 |  | anr | (_p1 <-> _p2) /\ _A1 == _A2 -> _A1 == _A2 | 
        
          | 4 | 3 | anwl | (_p1 <-> _p2) /\ _A1 == _A2 /\ _B1 == _B2 -> _A1 == _A2 | 
        
          | 5 |  | anr | (_p1 <-> _p2) /\ _A1 == _A2 /\ _B1 == _B2 -> _B1 == _B2 | 
        
          | 6 | 2, 4, 5 | Ifeqd | (_p1 <-> _p2) /\ _A1 == _A2 /\ _B1 == _B2 -> If _p1 _A1 _B1 == If _p2 _A2 _B2 | 
        
          | 7 | 6 | exp | (_p1 <-> _p2) /\ _A1 == _A2 -> _B1 == _B2 -> If _p1 _A1 _B1 == If _p2 _A2 _B2 | 
        
          | 8 | 7 | exp | (_p1 <-> _p2) -> _A1 == _A2 -> _B1 == _B2 -> If _p1 _A1 _B1 == If _p2 _A2 _B2 | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8)