theorem Ifeq (_p1 _p2: wff) (_A1 _A2 _B1 _B2: set):
$ (_p1 <-> _p2) ->
_A1 == _A2 ->
_B1 == _B2 ->
If _p1 _A1 _B1 == If _p2 _A2 _B2 $;
Step | Hyp | Ref | Expression |
1 |
|
anl |
(_p1 <-> _p2) /\ _A1 == _A2 -> (_p1 <-> _p2) |
2 |
1 |
anwl |
(_p1 <-> _p2) /\ _A1 == _A2 /\ _B1 == _B2 -> (_p1 <-> _p2) |
3 |
|
anr |
(_p1 <-> _p2) /\ _A1 == _A2 -> _A1 == _A2 |
4 |
3 |
anwl |
(_p1 <-> _p2) /\ _A1 == _A2 /\ _B1 == _B2 -> _A1 == _A2 |
5 |
|
anr |
(_p1 <-> _p2) /\ _A1 == _A2 /\ _B1 == _B2 -> _B1 == _B2 |
6 |
2, 4, 5 |
Ifeqd |
(_p1 <-> _p2) /\ _A1 == _A2 /\ _B1 == _B2 -> If _p1 _A1 _B1 == If _p2 _A2 _B2 |
7 |
6 |
exp |
(_p1 <-> _p2) /\ _A1 == _A2 -> _B1 == _B2 -> If _p1 _A1 _B1 == If _p2 _A2 _B2 |
8 |
7 |
exp |
(_p1 <-> _p2) -> _A1 == _A2 -> _B1 == _B2 -> If _p1 _A1 _B1 == If _p2 _A2 _B2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)