theorem Arroweq1d (_G: wff) (_A1 _A2 B: set): $ _G -> _A1 == _A2 $ > $ _G -> Arrow _A1 B == Arrow _A2 B $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hyp _h | _G -> _A1 == _A2 |
|
2 | eqsidd | _G -> B == B |
|
3 | 1, 2 | Arroweqd | _G -> Arrow _A1 B == Arrow _A2 B |