Theorem zltnle | index | src |

theorem zltnle (a b: nat): $ a  ~b <=Z a $;
StepHypRefExpression
1 con2b
(b <=Z a <-> ~a <Z b) -> (a <Z b <-> ~b <=Z a)
2 zlenlt
b <=Z a <-> ~a <Z b
3 1, 2 ax_mp
a <Z b <-> ~b <=Z a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)