Theorem zlenlt | index | src |

theorem zlenlt (a b: nat): $ a <=Z b <-> ~b 
    
StepHypRefExpression
1 biid
a <=Z b <-> a <=Z b
2 1 conv zle
a <=Z b <-> ~b <Z a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)