theorem zlenlt (a b: nat): $ a <=Z b <-> ~b StepHypRefExpression 1 biid a <=Z b <-> a <=Z b 2 1 conv zle a <=Z b <-> ~b <Z a Axiom use axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)
a <=Z b <-> a <=Z b
a <=Z b <-> ~b <Z a