Theorem zltletr | index | src |

theorem zltletr (a b c: nat): $ a  b <=Z c -> a 
    
StepHypRefExpression
1 zletr
b <=Z c -> c <=Z a -> b <=Z a
2 1 conv zle
b <=Z c -> ~a <Z c -> ~a <Z b
3 2 con4d
b <=Z c -> a <Z b -> a <Z c
4 3 com12
a <Z b -> b <=Z c -> a <Z c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)