Theorem zlt01eq | index | src |

theorem zlt01eq (a: nat): $ a  a = b1 (a // 2) $;
StepHypRefExpression
1 bitr
(a <Z 0 <-> odd a) -> (odd a <-> a = b1 (a // 2)) -> (a <Z 0 <-> a = b1 (a // 2))
2 zlt01
a <Z 0 <-> odd a
3 1, 2 ax_mp
(odd a <-> a = b1 (a // 2)) -> (a <Z 0 <-> a = b1 (a // 2))
4 eqb1
odd a <-> a = b1 (a // 2)
5 3, 4 ax_mp
a <Z 0 <-> a = b1 (a // 2)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)