theorem zleadd2 (a b c: nat): $ b <=Z c <-> a +Z b <=Z a +Z c $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | noteq | (c <Z b <-> a +Z c <Z a +Z b) -> (~c <Z b <-> ~a +Z c <Z a +Z b) | 
        
          | 2 | 1 | conv zle | (c <Z b <-> a +Z c <Z a +Z b) -> (b <=Z c <-> a +Z b <=Z a +Z c) | 
        
          | 3 |  | zltadd2 | c <Z b <-> a +Z c <Z a +Z b | 
        
          | 4 | 2, 3 | ax_mp | b <=Z c <-> a +Z b <=Z a +Z c | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)