theorem zeqmeqm2 (a b c n: nat):
$ modZ(n): a = b -> (modZ(n): a = c <-> modZ(n): b = c) $;
Step | Hyp | Ref | Expression |
1 |
|
id |
modZ(n): a = b -> modZ(n): a = b |
2 |
|
zeqmid |
modZ(n): c = c |
3 |
2 |
a1i |
modZ(n): a = b -> modZ(n): c = c |
4 |
1, 3 |
zeqmeqm23d |
modZ(n): a = b -> (modZ(n): a = c <-> modZ(n): b = c) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)