theorem zeqmid (a n: nat): $ modZ(n): a = a $;
Step | Hyp | Ref | Expression |
1 |
|
zdvdeq2 |
a -Z a = 0 -> (b0 n |Z a -Z a <-> b0 n |Z 0) |
2 |
1 |
conv zeqm |
a -Z a = 0 -> (modZ(n): a = a <-> b0 n |Z 0) |
3 |
|
zsubid |
a -Z a = 0 |
4 |
2, 3 |
ax_mp |
modZ(n): a = a <-> b0 n |Z 0 |
5 |
|
zdvd02 |
b0 n |Z 0 |
6 |
4, 5 |
mpbir |
modZ(n): a = a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)