theorem sylibrd (a b c d: wff):
  $ a -> b -> c $ >
  $ a -> (d <-> c) $ >
  $ a -> b -> d $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          hyp h1 | 
          a -> b -> c  | 
        
        
          | 2 | 
           | 
          hyp h2 | 
          a -> (d <-> c)  | 
        
        
          | 3 | 
          2 | 
          bi2d | 
          a -> c -> d  | 
        
        
          | 4 | 
          1, 3 | 
          syld | 
          a -> b -> d  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp)