| Step | Hyp | Ref | Expression |
| 1 |
|
peano2 |
suc (shl (upto n) a + upto a) = suc (upto (n + a)) <-> shl (upto n) a + upto a = upto (n + a) |
| 2 |
|
eqtr3 |
shl (upto n) a + suc (upto a) = suc (shl (upto n) a + upto a) ->
shl (upto n) a + suc (upto a) = suc (upto (n + a)) ->
suc (shl (upto n) a + upto a) = suc (upto (n + a)) |
| 3 |
|
addS2 |
shl (upto n) a + suc (upto a) = suc (shl (upto n) a + upto a) |
| 4 |
2, 3 |
ax_mp |
shl (upto n) a + suc (upto a) = suc (upto (n + a)) -> suc (shl (upto n) a + upto a) = suc (upto (n + a)) |
| 5 |
|
eqtr4 |
shl (upto n) a + suc (upto a) = shl (upto n) a + 2 ^ a -> suc (upto (n + a)) = shl (upto n) a + 2 ^ a -> shl (upto n) a + suc (upto a) = suc (upto (n + a)) |
| 6 |
|
addeq2 |
suc (upto a) = 2 ^ a -> shl (upto n) a + suc (upto a) = shl (upto n) a + 2 ^ a |
| 7 |
|
sucupto |
suc (upto a) = 2 ^ a |
| 8 |
6, 7 |
ax_mp |
shl (upto n) a + suc (upto a) = shl (upto n) a + 2 ^ a |
| 9 |
5, 8 |
ax_mp |
suc (upto (n + a)) = shl (upto n) a + 2 ^ a -> shl (upto n) a + suc (upto a) = suc (upto (n + a)) |
| 10 |
|
eqtr4 |
suc (upto (n + a)) = 2 ^ (n + a) -> shl (upto n) a + 2 ^ a = 2 ^ (n + a) -> suc (upto (n + a)) = shl (upto n) a + 2 ^ a |
| 11 |
|
sucupto |
suc (upto (n + a)) = 2 ^ (n + a) |
| 12 |
10, 11 |
ax_mp |
shl (upto n) a + 2 ^ a = 2 ^ (n + a) -> suc (upto (n + a)) = shl (upto n) a + 2 ^ a |
| 13 |
|
eqtr3 |
suc (upto n) * 2 ^ a = shl (upto n) a + 2 ^ a -> suc (upto n) * 2 ^ a = 2 ^ (n + a) -> shl (upto n) a + 2 ^ a = 2 ^ (n + a) |
| 14 |
|
mulS1 |
suc (upto n) * 2 ^ a = upto n * 2 ^ a + 2 ^ a |
| 15 |
14 |
conv shl |
suc (upto n) * 2 ^ a = shl (upto n) a + 2 ^ a |
| 16 |
13, 15 |
ax_mp |
suc (upto n) * 2 ^ a = 2 ^ (n + a) -> shl (upto n) a + 2 ^ a = 2 ^ (n + a) |
| 17 |
|
eqtr4 |
suc (upto n) * 2 ^ a = 2 ^ n * 2 ^ a -> 2 ^ (n + a) = 2 ^ n * 2 ^ a -> suc (upto n) * 2 ^ a = 2 ^ (n + a) |
| 18 |
|
muleq1 |
suc (upto n) = 2 ^ n -> suc (upto n) * 2 ^ a = 2 ^ n * 2 ^ a |
| 19 |
|
sucupto |
suc (upto n) = 2 ^ n |
| 20 |
18, 19 |
ax_mp |
suc (upto n) * 2 ^ a = 2 ^ n * 2 ^ a |
| 21 |
17, 20 |
ax_mp |
2 ^ (n + a) = 2 ^ n * 2 ^ a -> suc (upto n) * 2 ^ a = 2 ^ (n + a) |
| 22 |
|
powadd |
2 ^ (n + a) = 2 ^ n * 2 ^ a |
| 23 |
21, 22 |
ax_mp |
suc (upto n) * 2 ^ a = 2 ^ (n + a) |
| 24 |
16, 23 |
ax_mp |
shl (upto n) a + 2 ^ a = 2 ^ (n + a) |
| 25 |
12, 24 |
ax_mp |
suc (upto (n + a)) = shl (upto n) a + 2 ^ a |
| 26 |
9, 25 |
ax_mp |
shl (upto n) a + suc (upto a) = suc (upto (n + a)) |
| 27 |
4, 26 |
ax_mp |
suc (shl (upto n) a + upto a) = suc (upto (n + a)) |
| 28 |
1, 27 |
mpbi |
shl (upto n) a + upto a = upto (n + a) |