theorem sabfin (A: set) (G: wff) {x y: nat} (B: set x):
$ G -> y e. B -> x e. A $ >
$ G -> finite A $ >
$ G /\ x e. A -> finite B $ >
$ G -> finite (S\ x, B) $;
Step | Hyp | Ref | Expression |
1 |
|
hyp h |
G -> y e. B -> x e. A |
2 |
1 |
sabxab |
G -> S\ x, B == X\ x e. A, B |
3 |
2 |
fineqd |
G -> (finite (S\ x, B) <-> finite (X\ x e. A, B)) |
4 |
|
hyp hA |
G -> finite A |
5 |
|
hyp hB |
G /\ x e. A -> finite B |
6 |
4, 5 |
xabfin |
G -> finite (X\ x e. A, B) |
7 |
3, 6 |
mpbird |
G -> finite (S\ x, B) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)