Theorem sabfin | index | src |

theorem sabfin (A: set) (G: wff) {x y: nat} (B: set x):
  $ G -> y e. B -> x e. A $ >
  $ G -> finite A $ >
  $ G /\ x e. A -> finite B $ >
  $ G -> finite (S\ x, B) $;
StepHypRefExpression
1 hyp h
G -> y e. B -> x e. A
2 1 sabxab
G -> S\ x, B == X\ x e. A, B
3 2 fineqd
G -> (finite (S\ x, B) <-> finite (X\ x e. A, B))
4 hyp hA
G -> finite A
5 hyp hB
G /\ x e. A -> finite B
6 4, 5 xabfin
G -> finite (X\ x e. A, B)
7 3, 6 mpbird
G -> finite (S\ x, B)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)