theorem rlamArrow (B: set) (a: nat) {x: nat} (b: nat x):
$ \. x e. a, b e. Arrow a B <-> A. x (x e. a -> b e. B) $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(\. x e. a, b e. Arrow a B <-> func (\. x e. a, b) a B) ->
(func (\. x e. a, b) a B <-> A. x (x e. a -> b e. B)) ->
(\. x e. a, b e. Arrow a B <-> A. x (x e. a -> b e. B)) |
2 |
|
elArrow |
\. x e. a, b e. Arrow a B <-> func (\. x e. a, b) a B |
3 |
1, 2 |
ax_mp |
(func (\. x e. a, b) a B <-> A. x (x e. a -> b e. B)) -> (\. x e. a, b e. Arrow a B <-> A. x (x e. a -> b e. B)) |
4 |
|
rlamfunc |
func (\. x e. a, b) a B <-> A. x (x e. a -> b e. B) |
5 |
3, 4 |
ax_mp |
\. x e. a, b e. Arrow a B <-> A. x (x e. a -> b e. B) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)