theorem psetSlem2 (G: wff) (a b m n: nat) {x: nat}:
$ G -> A. x (0 < x /\ x < n -> x || m) $ >
$ G -> a != b $ >
$ G -> a < n $ >
$ G -> b < n $ >
$ G -> coprime (suc (m * suc a)) (suc (m * suc b)) $;
Step | Hyp | Ref | Expression |
1 |
|
neltlt |
a != b <-> a < b \/ b < a |
2 |
|
hyp h2 |
G -> a != b |
3 |
1, 2 |
sylib |
G -> a < b \/ b < a |
4 |
|
hyp h1 |
G -> A. x (0 < x /\ x < n -> x || m) |
5 |
4 |
anwl |
G /\ a < b -> A. x (0 < x /\ x < n -> x || m) |
6 |
|
anr |
G /\ a < b -> a < b |
7 |
|
hyp h4 |
G -> b < n |
8 |
7 |
anwl |
G /\ a < b -> b < n |
9 |
5, 6, 8 |
psetSlem1 |
G /\ a < b -> coprime (suc (m * suc a)) (suc (m * suc b)) |
10 |
|
copcom |
coprime (suc (m * suc b)) (suc (m * suc a)) <-> coprime (suc (m * suc a)) (suc (m * suc b)) |
11 |
4 |
anwl |
G /\ b < a -> A. x (0 < x /\ x < n -> x || m) |
12 |
|
anr |
G /\ b < a -> b < a |
13 |
|
hyp h3 |
G -> a < n |
14 |
13 |
anwl |
G /\ b < a -> a < n |
15 |
11, 12, 14 |
psetSlem1 |
G /\ b < a -> coprime (suc (m * suc b)) (suc (m * suc a)) |
16 |
10, 15 |
sylib |
G /\ b < a -> coprime (suc (m * suc a)) (suc (m * suc b)) |
17 |
9, 16 |
eorda |
G -> a < b \/ b < a -> coprime (suc (m * suc a)) (suc (m * suc b)) |
18 |
3, 17 |
mpd |
G -> coprime (suc (m * suc a)) (suc (m * suc b)) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)