Theorem prelxp2 | index | src |

theorem prelxp2 (A B: set) (a b: nat): $ a, b e. Xp A B -> b e. B $;
StepHypRefExpression
1 prelxp
a, b e. Xp A B <-> a e. A /\ b e. B
2 anr
a e. A /\ b e. B -> b e. B
3 1, 2 sylbi
a, b e. Xp A B -> b e. B

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)