Theorem pimex2 | index | src |

theorem pimex2 {x: nat} (p q: wff x): $ (P. x p -> q) -> E. x q $;
StepHypRefExpression
1 exim
A. x (p -> q) -> E. x p -> E. x q
2 1 impcom
E. x p /\ A. x (p -> q) -> E. x q
3 2 conv pim
(P. x p -> q) -> E. x q

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4)