Theorem piman | index | src |

theorem piman {x: nat} (a b c: wff x):
  $ (P. x a -> b) /\ (P. x a -> c) -> (P. x a -> b /\ c) $;
StepHypRefExpression
1 anll
E. x a /\ A. x (a -> b) /\ (P. x a -> c) -> E. x a
2 1 conv pim
(P. x a -> b) /\ (P. x a -> c) -> E. x a
3 ralan
A. x (a -> b /\ c) <-> A. x (a -> b) /\ A. x (a -> c)
4 anim
((P. x a -> b) -> A. x (a -> b)) -> ((P. x a -> c) -> A. x (a -> c)) -> (P. x a -> b) /\ (P. x a -> c) -> A. x (a -> b) /\ A. x (a -> c)
5 anr
E. x a /\ A. x (a -> b) -> A. x (a -> b)
6 5 conv pim
(P. x a -> b) -> A. x (a -> b)
7 4, 6 ax_mp
((P. x a -> c) -> A. x (a -> c)) -> (P. x a -> b) /\ (P. x a -> c) -> A. x (a -> b) /\ A. x (a -> c)
8 anr
E. x a /\ A. x (a -> c) -> A. x (a -> c)
9 8 conv pim
(P. x a -> c) -> A. x (a -> c)
10 7, 9 ax_mp
(P. x a -> b) /\ (P. x a -> c) -> A. x (a -> b) /\ A. x (a -> c)
11 3, 10 sylibr
(P. x a -> b) /\ (P. x a -> c) -> A. x (a -> b /\ c)
12 2, 11 iand
(P. x a -> b) /\ (P. x a -> c) -> E. x a /\ A. x (a -> b /\ c)
13 12 conv pim
(P. x a -> b) /\ (P. x a -> c) -> (P. x a -> b /\ c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4)