theorem piman {x: nat} (a b c: wff x):
  $ (P. x a -> b) /\ (P. x a -> c) -> (P. x a -> b /\ c) $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          anll | 
          E. x a /\ A. x (a -> b) /\ (P. x a -> c) -> E. x a  | 
        
        
          | 2 | 
          1 | 
          conv pim | 
          (P. x a -> b) /\ (P. x a -> c) -> E. x a  | 
        
        
          | 3 | 
           | 
          ralan | 
          A. x (a -> b /\ c) <-> A. x (a -> b) /\ A. x (a -> c)  | 
        
        
          | 4 | 
           | 
          anim | 
          ((P. x a -> b) -> A. x (a -> b)) -> ((P. x a -> c) -> A. x (a -> c)) -> (P. x a -> b) /\ (P. x a -> c) -> A. x (a -> b) /\ A. x (a -> c)  | 
        
        
          | 5 | 
           | 
          anr | 
          E. x a /\ A. x (a -> b) -> A. x (a -> b)  | 
        
        
          | 6 | 
          5 | 
          conv pim | 
          (P. x a -> b) -> A. x (a -> b)  | 
        
        
          | 7 | 
          4, 6 | 
          ax_mp | 
          ((P. x a -> c) -> A. x (a -> c)) -> (P. x a -> b) /\ (P. x a -> c) -> A. x (a -> b) /\ A. x (a -> c)  | 
        
        
          | 8 | 
           | 
          anr | 
          E. x a /\ A. x (a -> c) -> A. x (a -> c)  | 
        
        
          | 9 | 
          8 | 
          conv pim | 
          (P. x a -> c) -> A. x (a -> c)  | 
        
        
          | 10 | 
          7, 9 | 
          ax_mp | 
          (P. x a -> b) /\ (P. x a -> c) -> A. x (a -> b) /\ A. x (a -> c)  | 
        
        
          | 11 | 
          3, 10 | 
          sylibr | 
          (P. x a -> b) /\ (P. x a -> c) -> A. x (a -> b /\ c)  | 
        
        
          | 12 | 
          2, 11 | 
          iand | 
          (P. x a -> b) /\ (P. x a -> c) -> E. x a /\ A. x (a -> b /\ c)  | 
        
        
          | 13 | 
          12 | 
          conv pim | 
          (P. x a -> b) /\ (P. x a -> c) -> (P. x a -> b /\ c)  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp),
    
axs_pred_calc
     (ax_gen,
      ax_4)