Theorem pi11eqd | index | src |

theorem pi11eqd (_G: wff) (_n1 _n2: nat):
  $ _G -> _n1 = _n2 $ >
  $ _G -> pi11 _n1 = pi11 _n2 $;
StepHypRefExpression
1 hyp _nh
_G -> _n1 = _n2
2 1 fsteqd
_G -> fst _n1 = fst _n2
3 2 fsteqd
_G -> fst (fst _n1) = fst (fst _n2)
4 3 conv pi11
_G -> pi11 _n1 = pi11 _n2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0)