theorem orimd (a b c d e: wff): $ a -> b -> c $ > $ a -> d -> e $ > $ a -> b \/ d -> c \/ e $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orl | c -> c \/ e |
|
| 2 | hyp h1 | a -> b -> c |
|
| 3 | 1, 2 | syl6 | a -> b -> c \/ e |
| 4 | orr | e -> c \/ e |
|
| 5 | hyp h2 | a -> d -> e |
|
| 6 | 4, 5 | syl6 | a -> d -> c \/ e |
| 7 | 3, 6 | eord | a -> b \/ d -> c \/ e |