Theorem orimd | index | src |

theorem orimd (a b c d e: wff):
  $ a -> b -> c $ >
  $ a -> d -> e $ >
  $ a -> b \/ d -> c \/ e $;
StepHypRefExpression
1 orl
c -> c \/ e
2 hyp h1
a -> b -> c
3 1, 2 syl6
a -> b -> c \/ e
4 orr
e -> c \/ e
5 hyp h2
a -> d -> e
6 4, 5 syl6
a -> d -> c \/ e
7 3, 6 eord
a -> b \/ d -> c \/ e

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)