Theorem oreq1a | index | src |

theorem oreq1a (a b c: wff): $ (~c -> (a <-> b)) -> (a \/ c <-> b \/ c) $;
StepHypRefExpression
1 orcomb
a \/ c <-> c \/ a
2 orcomb
c \/ b <-> b \/ c
3 oreq2a
(~c -> (a <-> b)) -> (c \/ a <-> c \/ b)
4 2, 3 syl6bb
(~c -> (a <-> b)) -> (c \/ a <-> b \/ c)
5 1, 4 syl5bb
(~c -> (a <-> b)) -> (a \/ c <-> b \/ c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)