Theorem ocaseval | index | src |

theorem ocaseval (S: set) {i: nat} (n z: nat):
  $ ocase z S @ n = recn z (\ i, S @ fst i) n $;
StepHypRefExpression
1 recneq3
a1 = n -> recn z (\ i, S @ fst i) a1 = recn z (\ i, S @ fst i) n
2 1 applame
(\ a1, recn z (\ i, S @ fst i) a1) @ n = recn z (\ i, S @ fst i) n
3 2 conv ocase
ocase z S @ n = recn z (\ i, S @ fst i) n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)