theorem nexd (G: wff) {x: nat} (a: wff x): $ G -> ~a $ > $ G -> ~E. x a $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | alnex | A. x ~a <-> ~E. x a | 
        
          | 2 |  | hyp h | G -> ~a | 
        
          | 3 | 2 | iald | G -> A. x ~a | 
        
          | 4 | 1, 3 | sylib | G -> ~E. x a | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5)