theorem neqfal (a: wff): $ ~a <-> F. <-> a $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4 | (~a <-> F. <-> ~~a) -> (a <-> ~~a) -> (~a <-> F. <-> a) |
|
2 | eqfal | ~a <-> F. <-> ~~a |
|
3 | 1, 2 | ax_mp | (a <-> ~~a) -> (~a <-> F. <-> a) |
4 | notnot | a <-> ~~a |
|
5 | 3, 4 | ax_mp | ~a <-> F. <-> a |