theorem neqfal (a: wff): $ ~a <-> F. <-> a $;
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bitr4 | (~a <-> F. <-> ~~a) -> (a <-> ~~a) -> (~a <-> F. <-> a) | |
| 2 | eqfal | ~a <-> F. <-> ~~a | |
| 3 | 1, 2 | ax_mp | (a <-> ~~a) -> (~a <-> F. <-> a) | 
| 4 | notnot | a <-> ~~a | |
| 5 | 3, 4 | ax_mp | ~a <-> F. <-> a |