Theorem neqfal | index | src |

theorem neqfal (a: wff): $ ~a <-> F. <-> a $;
StepHypRefExpression
1 bitr4
(~a <-> F. <-> ~~a) -> (a <-> ~~a) -> (~a <-> F. <-> a)
2 eqfal
~a <-> F. <-> ~~a
3 1, 2 ax_mp
(a <-> ~~a) -> (~a <-> F. <-> a)
4 notnot
a <-> ~~a
5 3, 4 ax_mp
~a <-> F. <-> a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru)