theorem mul22 (a: nat): $ a * 2 = a + a $;
Step | Hyp | Ref | Expression |
1 |
|
eqtr |
a * 2 = a * 1 + a -> a * 1 + a = a + a -> a * 2 = a + a |
2 |
|
mulS2 |
a * suc 1 = a * 1 + a |
3 |
2 |
conv d2 |
a * 2 = a * 1 + a |
4 |
1, 3 |
ax_mp |
a * 1 + a = a + a -> a * 2 = a + a |
5 |
|
addeq1 |
a * 1 = a -> a * 1 + a = a + a |
6 |
|
mul12 |
a * 1 = a |
7 |
5, 6 |
ax_mp |
a * 1 + a = a + a |
8 |
4, 7 |
ax_mp |
a * 2 = a + a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano2,
peano5,
addeq,
add0,
addS,
mul0,
mulS)