Theorem mul22 | index | src |

theorem mul22 (a: nat): $ a * 2 = a + a $;
StepHypRefExpression
1 eqtr
a * 2 = a * 1 + a -> a * 1 + a = a + a -> a * 2 = a + a
2 mulS2
a * suc 1 = a * 1 + a
3 2 conv d2
a * 2 = a * 1 + a
4 1, 3 ax_mp
a * 1 + a = a + a -> a * 2 = a + a
5 addeq1
a * 1 = a -> a * 1 + a = a + a
6 mul12
a * 1 = a
7 5, 6 ax_mp
a * 1 + a = a + a
8 4, 7 ax_mp
a * 2 = a + a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, addeq, add0, addS, mul0, mulS)