theorem maxlt (a b c: nat): $ max a b < c <-> a < c /\ b < c $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(max a b < c <-> max (suc a) (suc b) <= c) -> (max (suc a) (suc b) <= c <-> a < c /\ b < c) -> (max a b < c <-> a < c /\ b < c) |
2 |
|
leeq1 |
suc (max a b) = max (suc a) (suc b) -> (suc (max a b) <= c <-> max (suc a) (suc b) <= c) |
3 |
2 |
conv lt |
suc (max a b) = max (suc a) (suc b) -> (max a b < c <-> max (suc a) (suc b) <= c) |
4 |
|
maxS |
suc (max a b) = max (suc a) (suc b) |
5 |
3, 4 |
ax_mp |
max a b < c <-> max (suc a) (suc b) <= c |
6 |
1, 5 |
ax_mp |
(max (suc a) (suc b) <= c <-> a < c /\ b < c) -> (max a b < c <-> a < c /\ b < c) |
7 |
|
maxle |
max (suc a) (suc b) <= c <-> suc a <= c /\ suc b <= c |
8 |
7 |
conv lt |
max (suc a) (suc b) <= c <-> a < c /\ b < c |
9 |
6, 8 |
ax_mp |
max a b < c <-> a < c /\ b < c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)