theorem maxlt (a b c: nat): $ max a b < c <-> a < c /\ b < c $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          bitr | 
          (max a b < c <-> max (suc a) (suc b) <= c) -> (max (suc a) (suc b) <= c <-> a < c /\ b < c) -> (max a b < c <-> a < c /\ b < c)  | 
        
        
          | 2 | 
           | 
          leeq1 | 
          suc (max a b) = max (suc a) (suc b) -> (suc (max a b) <= c <-> max (suc a) (suc b) <= c)  | 
        
        
          | 3 | 
          2 | 
          conv lt | 
          suc (max a b) = max (suc a) (suc b) -> (max a b < c <-> max (suc a) (suc b) <= c)  | 
        
        
          | 4 | 
           | 
          maxS | 
          suc (max a b) = max (suc a) (suc b)  | 
        
        
          | 5 | 
          3, 4 | 
          ax_mp | 
          max a b < c <-> max (suc a) (suc b) <= c  | 
        
        
          | 6 | 
          1, 5 | 
          ax_mp | 
          (max (suc a) (suc b) <= c <-> a < c /\ b < c) -> (max a b < c <-> a < c /\ b < c)  | 
        
        
          | 7 | 
           | 
          maxle | 
          max (suc a) (suc b) <= c <-> suc a <= c /\ suc b <= c  | 
        
        
          | 8 | 
          7 | 
          conv lt | 
          max (suc a) (suc b) <= c <-> a < c /\ b < c  | 
        
        
          | 9 | 
          6, 8 | 
          ax_mp | 
          max a b < c <-> a < c /\ b < c  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      add0,
      addS)