Theorem maxeqd | index | src |

theorem maxeqd (_G: wff) (_a1 _a2 _b1 _b2: nat):
  $ _G -> _a1 = _a2 $ >
  $ _G -> _b1 = _b2 $ >
  $ _G -> max _a1 _b1 = max _a2 _b2 $;
StepHypRefExpression
1 hyp _ah
_G -> _a1 = _a2
2 hyp _bh
_G -> _b1 = _b2
3 1, 2 lteqd
_G -> (_a1 < _b1 <-> _a2 < _b2)
4 3, 2, 1 ifeqd
_G -> if (_a1 < _b1) _b1 _a1 = if (_a2 < _b2) _b2 _a2
5 4 conv max
_G -> max _a1 _b1 = max _a2 _b2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq)