theorem ltappendid1 (a b: nat): $ b != 0 <-> a < a ++ b $;
Step | Hyp | Ref | Expression |
1 |
|
bitr3 |
(0 < b <-> b != 0) -> (0 < b <-> a < a ++ b) -> (b != 0 <-> a < a ++ b) |
2 |
|
lt01 |
0 < b <-> b != 0 |
3 |
1, 2 |
ax_mp |
(0 < b <-> a < a ++ b) -> (b != 0 <-> a < a ++ b) |
4 |
|
bitr |
(0 < b <-> a ++ 0 < a ++ b) -> (a ++ 0 < a ++ b <-> a < a ++ b) -> (0 < b <-> a < a ++ b) |
5 |
|
ltappend2 |
0 < b <-> a ++ 0 < a ++ b |
6 |
4, 5 |
ax_mp |
(a ++ 0 < a ++ b <-> a < a ++ b) -> (0 < b <-> a < a ++ b) |
7 |
|
lteq1 |
a ++ 0 = a -> (a ++ 0 < a ++ b <-> a < a ++ b) |
8 |
|
append02 |
a ++ 0 = a |
9 |
7, 8 |
ax_mp |
a ++ 0 < a ++ b <-> a < a ++ b |
10 |
6, 9 |
ax_mp |
0 < b <-> a < a ++ b |
11 |
3, 10 |
ax_mp |
b != 0 <-> a < a ++ b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)