Theorem lesnoc2 | index | src |

theorem lesnoc2 (a b c: nat): $ b <= c <-> a |> b <= a |> c $;
StepHypRefExpression
1 bitr
(b <= c <-> b : 0 <= c : 0) -> (b : 0 <= c : 0 <-> a |> b <= a |> c) -> (b <= c <-> a |> b <= a |> c)
2 lecons1
b <= c <-> b : 0 <= c : 0
3 1, 2 ax_mp
(b : 0 <= c : 0 <-> a |> b <= a |> c) -> (b <= c <-> a |> b <= a |> c)
4 leappend2
b : 0 <= c : 0 <-> a ++ b : 0 <= a ++ c : 0
5 4 conv snoc
b : 0 <= c : 0 <-> a |> b <= a |> c
6 3, 5 ax_mp
b <= c <-> a |> b <= a |> c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)