Theorem
inotda
≪
|
index
|
src
|
≫
theorem inotda (a b: wff): $ a /\ b -> ~b $ > $ a -> ~b $;
Step
Hyp
Ref
Expression
1
inot
(b -> ~b) -> ~b
2
hyp h
a /\ b -> ~b
3
1
,
2
syla
a -> ~b
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_3
,
ax_mp
)