theorem ifpeq1d (_G _p1 _p2 a b: wff): $ _G -> (_p1 <-> _p2) $ > $ _G -> (ifp _p1 a b <-> ifp _p2 a b) $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hyp _h | _G -> (_p1 <-> _p2) |
|
2 | biidd | _G -> (a <-> a) |
|
3 | biidd | _G -> (b <-> b) |
|
4 | 1, 2, 3 | ifpeqd | _G -> (ifp _p1 a b <-> ifp _p2 a b) |