Theorem exbi | index | src |

theorem exbi (a: wff) {x: nat}: $ E. x a <-> a $;
StepHypRefExpression
1 con1b
(~a <-> A. x ~a) -> (~A. x ~a <-> a)
2 1 conv ex
(~a <-> A. x ~a) -> (E. x a <-> a)
3 bicom
(A. x ~a <-> ~a) -> (~a <-> A. x ~a)
4 albi
A. x ~a <-> ~a
5 3, 4 ax_mp
~a <-> A. x ~a
6 2, 5 ax_mp
E. x a <-> a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)