Theorem eqtr4i | index | src |

theorem eqtr4i (a b c: nat): $ a = b $ > $ c = b $ > $ a = c $;
StepHypRefExpression
1 eqtr4
a = b -> c = b -> a = c
2 hyp h1
a = b
3 1, 2 ax_mp
c = b -> a = c
4 hyp h2
c = b
5 3, 4 ax_mp
a = c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7)