Theorem eqmeq23d | index | src |

theorem eqmeq23d (G: wff) (a b c d n: nat):
  $ G -> a = b $ >
  $ G -> c = d $ >
  $ G -> (mod(n): a = c <-> mod(n): b = d) $;
StepHypRefExpression
1 eqidd
G -> n = n
2 hyp h1
G -> a = b
3 hyp h2
G -> c = d
4 1, 2, 3 eqmeqd
G -> (mod(n): a = c <-> mod(n): b = d)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)