theorem elneq (a b c d: nat): $ a = b -> c = d -> (a e. c <-> b e. d) $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anl | a = b /\ c = d -> a = b |
|
2 | anr | a = b /\ c = d -> c = d |
|
3 | 1, 2 | elneqd | a = b /\ c = d -> (a e. c <-> b e. d) |
4 | 3 | exp | a = b -> c = d -> (a e. c <-> b e. d) |