Theorem elneq | index | src |

theorem elneq (a b c d: nat): $ a = b -> c = d -> (a e. c <-> b e. d) $;
StepHypRefExpression
1 anl
a = b /\ c = d -> a = b
2 anr
a = b /\ c = d -> c = d
3 1, 2 elneqd
a = b /\ c = d -> (a e. c <-> b e. d)
4 3 exp
a = b -> c = d -> (a e. c <-> b e. d)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)