theorem dropeq1d (_G: wff) (_l1 _l2 n: nat): $ _G -> _l1 = _l2 $ > $ _G -> drop _l1 n = drop _l2 n $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 |
hyp _h |
_G -> _l1 = _l2 |
|
2 |
_G -> n = n |
||
3 |
_G -> drop _l1 n = drop _l2 n |