Theorem dropeq1d | index | src |

theorem dropeq1d (_G: wff) (_l1 _l2 n: nat):
  $ _G -> _l1 = _l2 $ >
  $ _G -> drop _l1 n = drop _l2 n $;
StepHypRefExpression
1 hyp _h
_G -> _l1 = _l2
2 eqidd
_G -> n = n
3 1, 2 dropeqd
_G -> drop _l1 n = drop _l2 n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)