Theorem drop0 | index | src |

theorem drop0 (l: nat): $ drop l 0 = l $;
StepHypRefExpression
1 eqtr3
0 ++ drop l 0 = drop l 0 -> 0 ++ drop l 0 = l -> drop l 0 = l
2 append0
0 ++ drop l 0 = drop l 0
3 1, 2 ax_mp
0 ++ drop l 0 = l -> drop l 0 = l
4 eqtr3
take l 0 ++ drop l 0 = 0 ++ drop l 0 -> take l 0 ++ drop l 0 = l -> 0 ++ drop l 0 = l
5 appendeq1
take l 0 = 0 -> take l 0 ++ drop l 0 = 0 ++ drop l 0
6 take0
take l 0 = 0
7 5, 6 ax_mp
take l 0 ++ drop l 0 = 0 ++ drop l 0
8 4, 7 ax_mp
take l 0 ++ drop l 0 = l -> 0 ++ drop l 0 = l
9 takedrop
take l 0 ++ drop l 0 = l
10 8, 9 ax_mp
0 ++ drop l 0 = l
11 3, 10 ax_mp
drop l 0 = l

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)