Theorem divmod2 | index | src |

theorem divmod2 (a b c: nat): $ a // b % c = a % (c * b) // b $;
StepHypRefExpression
1 eqtr
a // b % c = a % (b * c) // b -> a % (b * c) // b = a % (c * b) // b -> a // b % c = a % (c * b) // b
2 divmod1
a // b % c = a % (b * c) // b
3 1, 2 ax_mp
a % (b * c) // b = a % (c * b) // b -> a // b % c = a % (c * b) // b
4 diveq1
a % (b * c) = a % (c * b) -> a % (b * c) // b = a % (c * b) // b
5 modeq2
b * c = c * b -> a % (b * c) = a % (c * b)
6 mulcom
b * c = c * b
7 5, 6 ax_mp
a % (b * c) = a % (c * b)
8 4, 7 ax_mp
a % (b * c) // b = a % (c * b) // b
9 3, 8 ax_mp
a // b % c = a % (c * b) // b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)