Theorem coprimeeq2d | index | src |

theorem coprimeeq2d (_G: wff) (a _b1 _b2: nat):
  $ _G -> _b1 = _b2 $ >
  $ _G -> (coprime a _b1 <-> coprime a _b2) $;
StepHypRefExpression
1 eqidd
_G -> a = a
2 hyp _h
_G -> _b1 = _b2
3 1, 2 coprimeeqd
_G -> (coprime a _b1 <-> coprime a _b2)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (muleq)