Theorem copdvdmul1 | index | src |

theorem copdvdmul1 (G: wff) (a b c: nat):
  $ G -> coprime a c $ >
  $ G -> a || b * c $ >
  $ G -> a || b $;
StepHypRefExpression
1 hyp h1
G -> coprime a c
2 dvdeq2
b * c = c * b -> (a || b * c <-> a || c * b)
3 mulcom
b * c = c * b
4 2, 3 ax_mp
a || b * c <-> a || c * b
5 hyp h2
G -> a || b * c
6 4, 5 sylib
G -> a || c * b
7 1, 6 copdvdmul2
G -> a || b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)