Theorem conseq1d | index | src |

theorem conseq1d (_G: wff) (_a1 _a2 b: nat):
  $ _G -> _a1 = _a2 $ >
  $ _G -> _a1 : b = _a2 : b $;
StepHypRefExpression
1 hyp _h
_G -> _a1 = _a2
2 eqidd
_G -> b = b
3 1, 2 conseqd
_G -> _a1 : b = _a2 : b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)