theorem bior1a (a b: wff): $ (a -> b) -> (a \/ b <-> b) $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot | a <-> ~~a |
|
2 | 1 | imeq1i | a -> b <-> ~~a -> b |
3 | biim1a | (~~a -> b) -> (~a -> b <-> b) |
|
4 | 3 | conv or | (~~a -> b) -> (a \/ b <-> b) |
5 | 2, 4 | sylbi | (a -> b) -> (a \/ b <-> b) |