Theorem bior1a | index | src |

theorem bior1a (a b: wff): $ (a -> b) -> (a \/ b <-> b) $;
StepHypRefExpression
1 notnot
a <-> ~~a
2 1 imeq1i
a -> b <-> ~~a -> b
3 biim1a
(~~a -> b) -> (~a -> b <-> b)
4 3 conv or
(~~a -> b) -> (a \/ b <-> b)
5 2, 4 sylbi
(a -> b) -> (a \/ b <-> b)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)