Theorem bian2rexi | index | src |

theorem bian2rexi (c: wff) {x: nat} (p a b: wff x):
  $ a <-> b /\ c $ >
  $ E. x (p /\ a) <-> E. x (p /\ b) /\ c $;
StepHypRefExpression
1 hyp h
a <-> b /\ c
2 1 a1i
p -> (a <-> b /\ c)
3 2 bian2rexa
E. x (p /\ a) <-> E. x (p /\ b) /\ c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5)