theorem bian1rexi (b: wff) {x: nat} (p a c: wff x):
$ a <-> b /\ c $ >
$ E. x (p /\ a) <-> b /\ E. x (p /\ c) $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hyp h | a <-> b /\ c |
|
| 2 | 1 | a1i | p -> (a <-> b /\ c) |
| 3 | 2 | bian1rexa | E. x (p /\ a) <-> b /\ E. x (p /\ c) |