Theorem bian22da | index | src |

theorem bian22da (G a b c d: wff):
  $ G /\ d -> (a <-> b /\ c) $ >
  $ G -> (d /\ a <-> d /\ b /\ c) $;
StepHypRefExpression
1 anass
d /\ b /\ c <-> d /\ (b /\ c)
2 hyp h
G /\ d -> (a <-> b /\ c)
3 2 aneq2da
G -> (d /\ a <-> d /\ (b /\ c))
4 1, 3 syl6bbr
G -> (d /\ a <-> d /\ b /\ c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)