theorem appendcan1 (a b c: nat): $ a ++ b = a ++ c <-> b = c $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          bitr4 | 
          (a ++ b = a ++ c <-> a ++ b <= a ++ c /\ a ++ c <= a ++ b) -> (b = c <-> a ++ b <= a ++ c /\ a ++ c <= a ++ b) -> (a ++ b = a ++ c <-> b = c)  | 
        
        
          | 2 | 
           | 
          eqlele | 
          a ++ b = a ++ c <-> a ++ b <= a ++ c /\ a ++ c <= a ++ b  | 
        
        
          | 3 | 
          1, 2 | 
          ax_mp | 
          (b = c <-> a ++ b <= a ++ c /\ a ++ c <= a ++ b) -> (a ++ b = a ++ c <-> b = c)  | 
        
        
          | 4 | 
           | 
          bitr | 
          (b = c <-> b <= c /\ c <= b) -> (b <= c /\ c <= b <-> a ++ b <= a ++ c /\ a ++ c <= a ++ b) -> (b = c <-> a ++ b <= a ++ c /\ a ++ c <= a ++ b)  | 
        
        
          | 5 | 
           | 
          eqlele | 
          b = c <-> b <= c /\ c <= b  | 
        
        
          | 6 | 
          4, 5 | 
          ax_mp | 
          (b <= c /\ c <= b <-> a ++ b <= a ++ c /\ a ++ c <= a ++ b) -> (b = c <-> a ++ b <= a ++ c /\ a ++ c <= a ++ b)  | 
        
        
          | 7 | 
           | 
          aneq | 
          (b <= c <-> a ++ b <= a ++ c) -> (c <= b <-> a ++ c <= a ++ b) -> (b <= c /\ c <= b <-> a ++ b <= a ++ c /\ a ++ c <= a ++ b)  | 
        
        
          | 8 | 
           | 
          leappend2 | 
          b <= c <-> a ++ b <= a ++ c  | 
        
        
          | 9 | 
          7, 8 | 
          ax_mp | 
          (c <= b <-> a ++ c <= a ++ b) -> (b <= c /\ c <= b <-> a ++ b <= a ++ c /\ a ++ c <= a ++ b)  | 
        
        
          | 10 | 
           | 
          leappend2 | 
          c <= b <-> a ++ c <= a ++ b  | 
        
        
          | 11 | 
          9, 10 | 
          ax_mp | 
          b <= c /\ c <= b <-> a ++ b <= a ++ c /\ a ++ c <= a ++ b  | 
        
        
          | 12 | 
          6, 11 | 
          ax_mp | 
          b = c <-> a ++ b <= a ++ c /\ a ++ c <= a ++ b  | 
        
        
          | 13 | 
          3, 12 | 
          ax_mp | 
          a ++ b = a ++ c <-> b = c  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)